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6 THE IMAGINARY THAT ISN'T

When [ was a mere slip of a lad and attended college, I had a friend
with whom I ate lunch every day. His 11 a.M. class was in sociology,
which I absolutely refused to take, and my 11 A.M. class was calculus,
which he as steadfastly refused to take—so we had to separate at
eleven and meet at twelve.

As it happened, his sociology professor was a scholar who did
things in the grand manner, holding court after class was over. The
more eager students gathered close and listened to him pontificate for
an additional fifteen minutes, while they threw in an occasional log
in the form of a question to feed the flame of oracle.

Consequently, when my calculus lecture was over, I had to enter
the sociology room and wait patiently for court to conclude.

Once I walked in when the professor was listing on the board his
classification of mankind into the two groups of mystics and realists,
and under mystics he had included the mathematicians along with the
poets and theologians. One student wanted to know why.

“Mathematicians,” said the professor, “are mystics because they be-
lieve in numbers that have no reality.”

Now ordinarily, as a nonmember of the class, I sat in the corner
and suffered in silent boredom, but now I rose convulsively, and said,
“What numbers?”

The professor looked in my direction and said, “The square root
of minus one. It has no existence. Mathematicians call it imaginary.
But they believe it has some kind of existence in a mystical way.”

“There’s nothing mystical about it,” I said, angrily. “The square
root of minus one is just as real as any other number.”

The professor smiled, feeling he had a live one on whom he could
now proceed to display his superiority of intellect (I have since had
classes of my own and I know exactly how he felt). He said, silkily,
“We have a young mathematician here who wants to prove the reality
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of the square root of minus one. Come, young man, hand me the
square root of minus one pieces of chalk!”

I reddened, “Well, now, wait—"

“That’s all,” he said, waving his hand. Mission, he imagined, ac-
complished, both neatly and sweetly.

But I raised my voice. “I'll do it. I'll do it. I'll hand you the square
root of minus one pieces of chalk, if you hand me a one-half piece of
chalk.”

The professor smiled again, and said, “Very well,” broke a fresh
piece of chalk in half, and handed me one of the halves. “Now for
your end of the bargain.”

“Ah, but wait,” I said, “you haven’t fulfilled your end. This is one
piece of chalk you've handed me, not a one-half piece.” I held it up
for the others to see. “Wouldn’t you all say this was one piece of
chalk? It certainly isn’t two or three.”

Now the professor wasn’t smiling. “Hold it. One piece of chalk is a
piece of regulation length. You have one that’s half the regulation
length.”

I said, “Now you’re springing an arbitrary definition on me. But
even if I accept it! are you willing to maintain that this is a one-half
piece of chalk and not a 0.48 piece or a 0.52 piece? And can you
really consider yourself qualified to discuss the square root of minus
one, when you’re a little hazy on the meaning of one half?”

But by now the professor had lost his equanimity altogether and
his final argument was unanswerable. He said, “Get the hell out of
here!” T left (laughing) and thereafter waited for my friend in the
corridor.

Twenty years have passed since then and I suppose I ought to finish
the argument—

Let’s start with a simple algebraic equation such as x+3 =5. The
expression, x, represents some number which, when substituted for x,
makes the expression a true equality. In this particular case x must
equal 2, since 2 + 3 = 5, and so we have “solved for KAk

The interesting thing about this solution is that it is the only solu-
tion. There is no number but 2 which will give 5 when 3 is added to it.

This is true of any equation of this sort, which is called a “linear
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equation” (because in geometry it can be represented as a straight
line) or “a polynomial equation of the first degree.” No polynomial
equation of the first degree can ever have more than one solution for x.

There are other equations, however, which can have more than one
solution. Here’s an example: x%2—5x+ 6 =0, where x? (“x square”
or “x squared”) represents x times x. This is called a “quadratic equa-
tion,” from a Latin word for “square,” because it involves x square. It
is also called “a polynomial equation of the second degree” because of
the little 2 in x2. As for x itself, that could be written x!, except that
the ! is always omitted and taken for granted, and that is why x + 3
=35 is an equation of the first degree.

If we take the equation x* — 5x + 6 = 0, and substitute 2 for x, then
x2 is 4, while 5x is 10, so that the equation becomes 4 —-10+6=0,
which is correct, making 2 a solution of the equation.

However, if we substitute 3 for x, then x% is 9 and Sx is 15, so
that the equation becomes 9 — 15 + 6 = 0, which is also correct, mak-
ing 3 a second solution of the equation.

Now no equation of the second degree has ever been found which
has more than two solutions, but what about polynomial equations
of the third degree? These are equations containing x* (“x cube” or “x
cubed”), which are therefore also called “cubic equations.” The ex-
pression x? represents x times x times x.

The equation x* — 6x2+ 11x — 6 = 0 has three solutions, since you
can substitute 1, 2, or 3 for x in this equation and come up with a
true equality in each case. No cubic equation has ever been found
with more than three solutions, however.

In the same way polynomial equations of the fourth degree can be
constructed which have four solutions but no more; polynomial equa-
tions of the fifth degree, which have five solutions but no more; and
so on. You might say, then, that a polynomial equation of the nth
degree can have as many as » solutions, but never more than n.

Mathematicians craved something even prettier than that and by
about 1800 found it. At that time, the German mathematician Karl
Friedrich Gauss showed that every equation of the nth degree had
exactly n solutions, not only no more, but also no less.

However, in order to make the fundamental theorem true, our no-
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tion of what constitutes a solution to an algebraic equation must be
drastically enlarged.

To begin with, men accept the “natural numbers” only: 1, 2, 3,
and so on. This is adequate for counting objects that are only consid-
ered as units generally. You can have 2 children, 5 cows, or 8 pots;
while to have 24 children, 5% cows, or 8} pots does not make much
sense.

In measuring continuous quantities such as lengths or weights, how-
ever, fractions became essential. The Egyptians and Babylonians man-
aged to work out methods of handling fractions, though these were
not very efficient by our own standards; and no doubt conservative
scholars among them sneered at the mystical mathematicians who be-
lieved in a number like 54, which was neither 5 nor 6.

Such fractions are really ratios of whole numbers. To say a plank
of wood is 2§ yards long, for instance, is to say that the length of the
plank is to the length of a standard yardstick as 21 is to 8. The Greeks,
however, discovered that there were definite quantities which could
not be expressed as ratios of whole numbers. The first to be discovered
was the square root of 2, commonly expressed as \/2, which is that
number which, when multiplied by itself, gives 2. There is such a num-
ber but it cannot be expressed as a ratio; hence, it is an “irrational
number.”

Only thus far did the notion of number extend before modern times.
Thus, the Greeks accepted no number smaller than zero. How can
there be less than nothing? To them, consequently, the equation
x+5=3 had no solution. How can you add 5 to any number and
have 3 as a result? Even if you added 5 to the smallest number (that
is, to zero), you would have 5 as the sum, and if you added 5 to any
other number (which would have to be larger than zero), you would
have a sum greater than 5.

The first mathematician to break this taboo and make systematic
use of numbers less than zero was the Italian, Girolamo Cardano.
After all, there can be less than nothing. A debt is less than nothing.

If all you own in the world is a two-dollar debt, you have two dol-
lars less than nothing. If you are then given five dollars, you end with
three dollars of your own (assuming you are an honorable man who
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pays his debts). Consequently, in the equation x + 5 = 3, x can be set
equal to —2, where the minus sign indicates a number less than zero.

Such numbers are called “negative numbers,” from a Latin word
meaning “to deny,” so that the very name carries the traces of the
Greek denial of the existence of such numbers. Numbers greater than
zero are “positive numbers” and these can be written +1, +2, +3, and
SO on.

From a practical standpoint, extending the number system by in-
cluding negative numbers simplifies all sorts of computations; as, for
example, those in bookkeeping.

From a theoretical standpoint, the use of negative numbers means
that every equation of the first degree has exactly one solution. No
more; no less.

If we pass on to equations of the second degree, we find that the
Greeks would agree with us that the equation x2 — 5x + 6 =0 has two
solutions, 2 and 3. They would say, however, that the equation
x2+ 4x — 5 = 0 has only one solution, 1. Substitute 1 for x and x*is 1,
while 4x is 4, so that the equation becomes 1+ 4 —5=0. No other
number will serve as a solution, as long as you restrict yourself to
positive numbers.

However, the number —5 is a solution, if we consider a few rules
that are worked out in connection with the multiplication of negative
numbers. In order to achieve consistent results, mathematicians have
decided that the multiplication of a negative number by a positive
number yields a negative product, while the multiplication of a nega-
tive number by a negative number yields a positive product.

If, in the equation x2 + 4x —5=0, —5 is substituted for x, then x2?
becomes —5 times —5, or +25, while 4x becomes +4 times —35, or
—20. The equation becomes 25—20—5=0, which is true. We
would say, then, that there are two solutions to this equation, +1 and
=5

Sometimes, a quadratic equation does indeed seem to have but a
single root, as, for example, x*—6x+9 =0, which will be a true
equality if and only if the number +3 is substituted for x. However,
the mechanics of solution of the equation show that there are actually
two solutions, which happen to be identical. Thus, x2 — 6x +9 =0 can
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be converted to (x —3) (x — 3) =0 and each (x — 3) yields a solution.
The two solutions of this equation are, therefore, +3 and +-3.

Allowing for occasional duplicate solutions, are we ready to say
then that all second-degree equations can be shown to have exactly
two solutions if negative numbers are included in the number system?

Alas, no! For what about the equation x*+ 1 =0. To begin with,
x? must be —1, since substituting —1 for x> makes the equation
—1+ 1 =0, which is correct enough.

But if x2 is —1, then x must be the famous square root of minus one
(\/—1), which occasioned the set-to between the sociology professor
and myself. The square root of minus one is that number which when
multiplied by itself will give —1. But there is no such number in the
set of positive and negative quantities, and that is the reason the so-
ciology professor scorned it. First, +-1 times +1 is +1; secondly, —1
times —1 is +1.

To allow any solution at all for the equation x*+ 1 =20, let alone
two solutions, it is necessary to get past this roadblock. If no positive
number will do and no negative one either, it is absolutely essential to
define a completely new kind of number; an imaginary number, if you
like; one with its square equal to —1.

We could, if we wished, give the new kind of number a special sign.
The plus sign does for positives and the minus sign for negatives; so
we could use an asterisk for the new number and say that *1 (“star
one”) times *1 was equal to —1.

However, this was not done. Instead, the symbol i (for “imagi-
nary”) was introduced by the Swiss mathematician Leonhard Euler
in 1777 and was thereafter generally adopted. So we can write i=
vV—1ori#=-1.

Having defined i in this fashion, we can express the square root of
any negative number. For instance, \/—4 can be written \/4 times
\/—1, or 2i. In general, any square root of a negative number, \/—n,
can be written as the square root of the equivalent positive number
times the square root of minus one; that is, \/—n=\/ni.

In this way, we can picture a whole series of imaginary numbers
exactly analogous to the series of ordinary or “real numbers.” For 1,
2,3,4, ..., we would have i, 2, 3i, 4i. . . . This would include
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fractions, for  would be matched by 2} 12 by 13, and so on. It
would also include irrationals, for \/2 would be matched by \/2 i and
even a number like 7 (pi) would be matched by 7ri.

These are all comparisons of positive numbers with imaginary num-
bers. What about negative numbers? Well, why not negative imagi-
naries, too? For —1, —2, —3, —4, . . . , there would be —i, —2i, —3i,
AT,

So now we have four classes of numbers: 1) positive real numbers,
2) negative real numbers, 3) positive imaginary numbers, 4) nega-
tive imaginary numbers. (When a negative imaginary is multiplied by
a negative imaginary, the product is negative.)

Using this further extension of the number system, we can find the
necessary two solutions for the equation x% + 1 =0. They are +i and
—i. First +i times +i equals —1, and secondly —i times —i equals —1,
so that in either case, the equation becomes ~1 4 1 =0, which is a true
equality.

In fact, you can use the same extension of the number system to
find all four solutions for an equation such as x* — 1 = 0. The solu-
tions are +1, —1, +i, and —i. To show this, we must remember that
any number raised to the fourth power is equal to the square of that
number multiplied by itself. That is, #* equals #? times n.

Now let’s substitute each of the suggested solutions into the equa-
tions so that x* becomes successively (+1)%, (—1)%, (+i)%, and
(=%

First (+1)* equals (+1)2 times (+1)2, and since (41)? equals
+1, that becomes +1 times +1, which is +1.

Second, (—1)* equals (—1)2 times (—1)2, and since (—1)2 also
equals +1, the expression is again +1 times +1, or +1.

Third, (-+i)* equals (+i)2 times (+i)2 and we have defined
(+i)2 as —1, so that the expression becomes —1 times —1, or +1.

Fourth, (—i)* equals (—i)2 times (—i)2, which is also —1 times
—1, or +1.

All four suggested solutions, when substituted into the equation
x* — 1= 0, give the expression +1 — 1 =0, which is correct.

It might seem all very well to talk about imaginary numbers—for
a mathematician. As long as some defined quantity can be made sub-

THE IMAGINARY THAT ISN'T 67

ject to rules of manipulation that do not contradict anything else in
the mathematical system, the mathematician is happy. He doesn’t
really care what it “means.”

Ordinary people do, though, and that’s where my sociologist’s
charge of mysticism against mathematicians arises.

And yet it is the easiest thing in the world to supply the so-called
“imaginary” numbers with a perfectly real and concrete significance.
Just imagine a horizontal line crossed by a vertical line and call the
point of intersection zero. Now you have four lines radiating out at
mutual right angles from that zero point. You can equate those lines
with the four kinds of numbers.

If the line radiating out to the right is marked off at equal intervals,
the marks can be numbered +1, +2, +3, +4, . . . , and so on for as
long as we wish, if we only make the line long enough. Between the
markings are all the fractions and irrational numbers. In fact, it can
be shown that to every point on such a line there corresponds one
and only one positive real number, and for every positive real num-
ber there is one and only one point on the line.

The line radiating out to the left can be similarly marked off with
the negative real numbers, so that the horizontal line can be con-
sidered the “real-number axis,” including both positives and negatives.

Similarly, the line radiating upward can be marked off with the
positive imaginary numbers, and the one radiating downward with
the negative imaginary numbers. The vertical line is then the imagi-
nary-number axis.

Suppose we label the different numbers not by the usual signs and
symbols, but by the directions in which the lines point. The rightward
line of positive real numbers can be called East because that would
be its direction of extension on a conventional map. The leftward
line of negative real numbers would be West; the upward line of posi-
tive imaginaries would be North; and the downward line of negative
imaginaries would be South.

Now if we agree that +1 times +1 equals +1, and if we concen-
trate on the compass signs as I have defined them, we are saying that
East times East equals East. Again since —~1 times —1 also equals +1,
West times West equals East. Then, since +i times +i equals —1, and
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so does —i times —i, then North times North equals West and so does
South times South.

We can also make other combinations such as —1 times i, which
equals —j (since positive times negative yields a negative product even
when imaginaries are involved), so that West times North equals
South. If we list all the possible combinations as compass points,
abbreviating those points by initial letters, we can set up the follow-
ing system:

EXE=E ExS=S EXW=W EXN=N
SXE=S SXS=W SXW=N SXN=E
WXE=W WxXxS=N WXW=E WXN=S
NXE=N NXxXS=E Nxw=S$ NXN=W

There is a very orderly pattern here. Any compass point multiplied
by East is left unchanged, so that East as a multiplier represents a
rotation of 0°. On the other hand, any compass point multiplied by
West is rotated through 180° (“about face”). North and South repre-
sent right-angle turns. Multiplication by South results in a 90° clock-
wise turn (“right face”); while multiplication by North results in a
90° counterclockwise turn (“left face”).

Now it so happens that an unchanging direction is the simplest
arrangement, so East (the positive real numbers) is easier to handle
and more comforting to the soul than any of the others. West (the
negative real numbers), which produces an about face but leaves one
on the same line at least, is less comforting, but not too bad. North
and South (the imaginary numbers), which send you off in a new
direction altogether, are least comfortable.

But viewed as compass points, you can see that no set of numbers
is more “imaginary” or, for that matter, more “real” than any other.

Now consider how useful the existence of two number axes can be.
As long as we deal with the real numbers only, we can move along
the real-number axis, backward and forward, one-dimensionally. The
same would be true if we used only the imaginary-number axis.

Using both, we can define a point as so far right or left on the
real-number axis and so far up or down on the imaginary-number
axis. This will place the point somewhere in one of the quadrants
formed by the two axes. This is precisely the manner in which points
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are located on the earth’s surface by means of latitude and longitude.

We can speak of a number such as +5 + 5i, which would repre-
sent the point reached when you marked off 5 units East followed by
5 units North. Or you can have —7 + 6/ or +0.5432 — 9.115{ or
+V2+V3 i

Such numbers, combining real and imaginary units, are called
“complex numbers.”

Using both axes, any point in a plane (and not merely on a line)
can be made to correspond to one and only one complex number.
Again every conceivable complex number can be made to correspond
to one and only one point on a plane.

In fact, the real numbers themselves are only special cases of the
complex numbers, and so, for that matter, are the imaginary numbers.
If you represent complex numbers as all numbers of the form
+a+ bi, then the real numbers are all those complex numbers in
which b happens to be equal to zero. And imaginary numbers are all
the complex numbers in which a happens to be equal to zero.

The use of the plane of complex numbers, instead of the lines of
real numbers only, has been of inestimable use to the mathematician.

For instance, the number of solutions in a polynomial equation is
equal to its degree only if complex numbers are considered as solu-
tions, rather than merely real numbers and imaginary numbers. For
instance the two solutions of x2 — 1= 0 are 41 and —1, which can
be written as +1 +0i and —1 + 0i. The two solutions of x>+ 1=0
are +i and —i, or 0+ and 0 —i. The four solutions of x*—1=0
are all four complex numbers just listed.

In all these very simple cases, the complex numbers contain zeros
and boil down to either real numbers or to imaginary numbers. This,
nevertheless, is not always so. In the equation x3 — 1 =10 one solu-
tion, to be sure, is +1+0i (which can be written simply as +1),
but the other two solutions are —3 + §\/3 iand —} — :\/3 i.

The Gentle Reader with ambition can take the cube of either of
these expressions (if he remembers how to multiply polynomials al-
gebraically) and satisfy himself that it will come out +1.

Complex numbers are of practical importance too. Many familiar
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measurements involve “scalar quantities” which differ only in magni-
tude. One volume is greater or less than another; one weight is greater
or less than another; one density is greater or less than another. For
that matter, one debt is greater or less than another. For all such
measurements, the real numbers, either positive or negative, suffice.

However, there are also “vector quantities” which possess both
magnitude and direction. A velocity may differ from another velocity
not only in being greater or less, but in being in another direction.
This holds true for forces, accelerations, and so on.

For such vector quantities, complex numbers are necessary to the
mathematical treatment, since complex numbers include both magni-
tude and direction (which was my reason for making the analogy
between the four types of numbers and the compass points).

Now, when my sociology professor demanded “the square root of
minus one pieces of chalk,” he was speaking of a scalar phenomenon
for which the real numbers were sufficient.

On the other hand, had he asked me how to get from his room to
a certain spot on the campus, he would probably have been angered
if I had said, “Go two hundred yards.” He would have asked, with
asperity, “In which direction?”

Now, you see, he would have been dealing with a vector quantity
for which the real numbers are insufficient. I could satisfy him by
saying “Go two hundred yards northeast,” which is equivalent to
saying “Go 100\/2 plus 100\/2 i yards.”

Surely it is as ridiculous to consider the square root of minus one
“imaginary” because you can’t use it to count pieces of chalk as to
consider the number 200 as “imaginary” because by itself it cannot
express the location of one point with reference to another.

7 PRE-FIXING IT UP

I go through life supported and bolstered by many comforting myths,
as do all of us. One of my own particularly cherished articles of faith
is that there are no arguments against the metric system and that the
common units make up an indefensible farrago of nonsense that we
keep out of stubborn folly.

Imagine the sobering effect, then, of having recently come across
a letter by a British gentleman who bitterly denounced the metric
system as being artificial, sterile, and not geared to human needs. For
instance, he said (and I don’t quote exactly), if one wants to drink
beer, a pint of beer is the thing. A liter of beer is too much and half a
liter is too little, but a pint, ah, that’s just right.

As far as I can tell, the gentleman was serious in his provincialism,
and in considering that that to which he is accustomed has the force
of a natural law. It reminds me of the pious woman who set her face
firmly against all foreign languages by holding up her Bible and say-
ing, “If the English language was good enough for the prophet Isaiah,
and the apostle Paul, it is good enough for me.”

But mainly it reminds me that I want to write an essay on the metric
system.

In order to do so, I want to begin by explaining that the value of
the system does not lie in the actual size of the basic units. Its worth
is this: that it is a logical system. The units are sensibly interrelated.

All other sets of measurements with which I am acquainted use
separate names for each unit involving a particular type of quantity.
In distance, we ourselves have miles, feet, inches, rods, furlongs, and
so on. In volume, we have pecks, bushels, pints, drams. In weight,

1 Before you write to tell me that half a liter is larger than a pint, let me ex-

plain that though it is larger than an American pint, it is smaller than a British
pint,



