
[ Note: all information below is taken from the 20082010 Moravian College Course Catalog. If you would like more uptodate information, see the current Course Catalog, or contact Kelly Krieble. ]
Aspects of physics important in biological processes and health sciences. Major topics in the first term include elementary mechanics, biomechanics, fluids, thermodynamics, and metabolism. Secondterm topics include electromagnetism, bioelectricity, membrane transport, waves, geometrical optics, and radiation. Prerequisite: Mathematics 106166 or 170. Four 50minute or three 70minute lectures, one 3hour laboratory. (F4) Krieble, Roeder
First term treats mechanics, heat, and wave phenomena. Second term treats electricity, magnetism, optics, and selected topics in modern physics. Corequisites: Mathematics 170 and 171. Three 50minute lectures, one 50minute problem session, one 3hour laboratory. (F4) Krieble, Powlette
Laboratoryoriented course in computer hardware for science, mathematics, and computerscience students. Topics include logic gates, Boolean algebra, combinational and sequential logic circuits, registertransfer logic, microprocessors, addressing modes, programming concepts, microcomputer system confi guration, and interfacing. Three 50minute periods, two 3hour laboratories. Staff
A laboratoryoriented course in electronics stressing applications of linear integrated circuits to laboratory measurement in physics, chemistry, and biology. Laboratory experiments and lecturediscussions include circuit analysis, system design using operational amplifi ers, analog computer systems, transistors, power supplies, oscillators, Butterworth response filters, and phaselocked loops. Prerequisite: Physics 109110 or 111112 or permission of instructor. Fall. Three 50minute lectures, two 3hour laboratories. Powlette
[ images of experiments ]
Concepts leading to breakdown of classical physics and emergence of quantum theory. Topics include atomic physics, relativity and fourvector spacetime physics, solidstate physics, nuclear physics, and elementary particles. Independent laboratory experiments (e.g., Compton effect, electron spin resonance, electron diffraction, Mössbauer effect) complement student’s interest and needs. Prerequisites: Physics 111112 and Mathematics 171 or permission of instructor. Spring. Three 50minute lectures, one 50minute problem session, one 3hour laboratory. Writingintensive. Krieble, Powlette
First term treats motion of a single particle with emphasis on conservative forces and their properties, central force fields, and oscillatory motions. Second term treats motion of the system of particles, rigid body mechanics, accelerated reference systems, and mechanics (Lagrange and Hamilton). Emphasis on computer solutions of problems. Prerequisites: Physics 111112 and Mathematics 211 or permission of instructor. Alternate years. Four 50minute lectures or three 70minute lectures. Roeder
[ images of experiments ]
Theoretical and experimental study of the interaction of electromagnetic radiation and matter. Topics include wave and photon representations of light, geometrical optics, polarization, interference, and diffraction phenomena. Selected topics in modern optics include gas and semiconductor lasers, electrooptics, nonlinear optics, and fiber optics. Standard laboratory experiments include interferometry and diffraction. Applicationbased experiments include laser construction, holography, photorefractive nonlinear optics, dynamic diffractive optics, and fiber optics. Prerequisites: Physics 111112 and Mathematics 211 or permission of instructor. Alternate years. Three 50minute lectures, one 3hour laboratory. Powlette
Unified treatment of thermodynamics and statistical mechanics. Topics include laws of thermodynamics, state functions and variables, application to physical and chemical systems, kinetic theory, distribution functions, FermiDirac and BoseEinstein statistics, blackbody radiation, and Debye theory of specific heats. Prerequisites: Physics 111112 and Mathematics 211 or permission of instructor. Alternate years. Three 50minute lectures, one 3hour laboratory. Krieble
Fourier transforms, wave packets, Schrödinger’s equation, squarewell and barrier potentials, the harmonic oscillator, the hydrogen atom, atomicspectra, multielectron atoms, algebraic methods, matrix mechanics, perturbation theory. Prerequisites: Physics 222 and Mathematics 221 or permission of instructor. Alternate years. Three 50minute lectures, one 50minute problem session, one 3hour laboratory. Krieble
Properties of nuclei, the deuteron, partialwave analysis; alpha, beta, and gamma decay; nuclear models, fission, fusion, nuclear reactions, properties of elementary particles, classification schemes, interactions. Prerequisites: Physics 341 and Mathematics 221 or consent of instructor. Alternate years. Three 50minute lectures. Powlette
Mathematical techniques for solving ordinary and partial differential equations that arise in theoretical physics. Topics include series solutions, special functions, operational methods, boundaryvalue problems, orthogonal functions, product solutions, and/or selected topics determined by needs of students and interest of instructor. Prerequisites: At least one year of college physics and Mathematics 221. Alternate years. Three 50minute lectures. Roeder
Fundamental study of matter in the solid state, including periodic arrays of atoms, fundamental types of lattices, position and orientation of planes in crystals, simple crystal structures, reciprocal lattices, Brillouin zones, crystals of inert gases, ionic crystals, covalent crystals, hydrogen bonding, phonons and lattice vibrations, lattice heat capacities, diffusion, freeelectron gas, energy bands, and point defects. Prerequisites: Mathematics 211 or equivalent. A course in modern atomic physics is recommended. Alternate years. Three 50minute lectures, one 50minute problem session. Powlette, Roeder
[ images of experiments ]
Field concepts, electromagnetic theory, and electromagnetic waves. First term treats electrostatics, steady fields and currents, and electromagnetism. Second term treats timevarying fields and currents, Maxwell’s equations, and electromagnetic waves. Prerequisites: Physics 111112 and Mathematics 211 or permission of instructor. Alternate years. Three 50minute lectures, one 3hour laboratory. Krieble
Selected topics in theoretical and/or experimental physics. Choice of topics determined by needs of students and interest of instructor. Alternate years. Lecture and/or laboratory hours depend on topics. Staff
Independent study provides students with an opportunity to undertake a program of supervised reading and research not normally provided within existing courses. To be eligible for Independent study, a student must have junior or senior standing with a cumulative quality point average of at least 2.70.
Field study is an opportunity for offcampus work, study, or both. Field study may be undertaken on fulltime or parttime basis and may assume the form of volunteer work or internships in public or private agencies, institutes or businesses. To be eligible for Field study, a student must have junior or senior standing with a cumulative quality point average of at least 2.70.
The purpose of the Honors program is to offer qualified seniors the opportunity to work on a year long independent, intensive research project on a specific topic of their choice. The student works under the guidance of a faculty member who serves as the Honors project advisor. Upon successful completion of the Honors program the student receives credit for the equivalent of two courses, and his or her degree carries a citation of Honors in the field of research.
[ Back to Physics Curriculum ] [ Courses in Earth Science ] 
